¿Cómo se fabricaban perdigones de plomo?

La física de las torres de perdigones de Jeréz

 

En 1782, el británico William Watts patentó una nueva tecnología para la fabricación de perdigones de plomo para munición, las “torres de perdigones” que reemplazaron el uso de moldes o la inmersión de gotas de plomo en barriles de agua. En estas torres se dejan caer gotas de plomo desde una gran altura (en Baltimore, Maryland, EEUU, hay una que alcanza los 71 m) que adoptan una forma esférica mientras se enfrían durante su caída libre gracias a la tensión superficial. Hay torres de perdigones por todo el mundo (en España las hay en Jerez y en Sevilla). En un torre moderna de finales del s. XX se producen unos diez mil perdigones por segundo. Se vierten unas cinco toneladas de plomo fundido por hora en un recipiente de cobre con 2400 agujeros en su fondo. Los chorros de plomo fundido en caída libre, casi de forma inmediata, se ponen a gotear gracias a la inestabilidad de Plateau-Rayleigh, de manera similar a como gotea un grifo de agua con un caudal bajo. ¿Cómo depende el tamaño del perdigón de la altura de la torre?

Una gota de plomo líquido de masa m cae desde una altura H en una torre de perdigones. La solidificación de la gota requiere una energía igual a  m·L, donde L = 24,7 kJ/kg es el calor latente de fusión del plomo. En la parte inferior de la torre hay una cuba de agua que amortigua el impacto y enfría los perdigones hasta la temperatura ambiente. Para evitar la producción de grandes cantidades de vapor de agua, la temperatura del perdigón al alcanzar el agua debe ser menor que el punto de ebullición del agua. Por tanto, la altura de la torre debe garantizar que tras su solidificación, el perdigón debe perder una energía térmica adicional durante su vuelo de al menos m·c·ΔT, donde c = 128 J /kg/K es el calor específico del plomo y ΔT = 227 K es la diferencia de temperatura entre el punto de fusión del plomo (600 K) y el punto de ebullición del agua (373 K). Un cálculo termodinámico sencillo en función del tiempo de caída (que se puede estimar suponiendo que la resistencia del aire es proporcional a la velocidad al cuadrado, pues el número de Reynolds para este problema ronda los 2500) y del coeficiente de transferencia de calor del perdigón con el aire, permite obtener (los detalles son sencillos y se pueden consultar en el artículo de Lipscombe y Mungan) que el radio del perdigón R está relacionado con la altura H de la caída y la masa original de la gota de plomo están relacionados por la fórmula:

R = α H5/8, donde α = 1,2 × 10-4 m3/8.

Esta fórmula sublineal implica que un perdigón de hasta 1,2 mm de radio se puede producir con una torre de al menos 40 metros. Para producir un perdigón con un radio de 1,9 mm se requeriría el doble de altura, unos 80 metros.

En resumen, los detalles del análisis termodinámico de la fabricación de perdigones en un torre de caída libre no son complicados y pueden ser utilizados para ilustrar la termodinámica de la transferencia de calor en cursos de física y/o ingeniería

Compartir:

Daniel Garcia

Doctor en Ciencias Químicas (Química Orgánica) Universidad de La Laguna. Máster en Farmacos Antitumorales (Diseño, Síntesis y Biotecnología) Máster Química Aplicada (Gestión de Calidad en Laboratorios. Nomativas ISO) Profesor de Ciencias (ESO y Bachillerato) en el Colegio Hispano Inglés (S/C de Tenerife) Espacio wiki educativo HICIENCIAS http://hiciencias.wikispaces.com/Bienvenida Wiki Proyectos Ciencias del Mundo Contemporáneo (1º Bachillerato) http://labhome.wikispaces.com/Bienvenida